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1. Introduction and set-up

Let ¢ be a prime number and let k& be an algebraically closed field with char(k) # ¢.
Let K/k be a function field of transcendence degree td(K/k) > 1 with absolute Galois
group Gg.

Take Gg) = Gk and for all i > 1, let G%H) =[G, GW])(GD)* . In other words, the
groups {G&?}izl form the descending central ¢>°-series of G .

Then

% = GY/G% = Gal(K'/K)

is the Galois group of the maximal pro-¢ abelian extension K’ of K, and
s, = GY/GY = Gal(K"/K)

is the Galois group of the maximal pro-f abelian-by-central extension K” of K. Note
that the projection map pr : IS, — II% has kernel [II4,I1%], and therefore T can be
group theoretically recovered from IIf .

We will prove the following theorem, following the results of Pop in [1-3].

1.1. Theorem. [1, Theorem I] Assume that k = k is the algebraic closure of a finite
field. With the notation as above, K/k can be group theoretically recovered from 115 .

The proof consists of two parts:

e The local theory: starting from Il this yields the decomposition groups and
inertia groups in II%- corresponding to prime divisors (valuations) of K/k. The
output of the local theory is the so-called total decomposition graph %@?t of K/k,
together with its rational quotients; cf. Corollary 7.2 and Proposition 7.3.

e The global theory: starting from % and some of its (rational) quotients,
this yields the projective space P(K) = K*/k* inside K = Homeon (1%, Zy),
together with all projective lines. Using Artin’s fundamental theorem of projective
geometries, one recovers K /k from this; cf. Theorem 6.11.

1.2. Remark. The paper [4] proves a generalisation of Theorem 1.1: if td(K/k) >
dim(k)+1 (where dim(k) denotes the Kronecker dimension of k), then K /k can be group
theoretically recovered from IIf ;. Since dim(k) = 0 if and only if k is the algebraic
closure of a finite field, this implies Theorem 1.1.

Let the divisorial inertia Jn.div(K) of K be defined as in Definition 2.6. The proof
in [4] works as follows: first, [4, Theorem 1.2(2)| group theoretically recovers In.div(K)
from TI¢(K) if td(K/k) > dim(k). Then [4, Theorem 1.1(1)] recovers K/k from I1¢(K)
endowed with In.div(K), again by first recovering the total decomposition graph @yt
and then reconstructing the projective space P(K) and projective lines.
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2. Valuation theory

2.1. Notation. For any valuation v of K/k (that is to say, a valuation of K which is
trivial on k), let Kv be its residue field, v K be its value group, and &, its valuation ring.
Valuations are ordered by v < w <> 0,, C 0,. Then v is a coarsening of w, and w is a
refinement of v by some valuation vy = w/v on Kv. In other words, w = vg o v is the
valuation theoretic composition of v and vy.

2.2. Definition (Prime r-divisors). A prime r-divisor or generalised prime divisor of
K/k is a valuation v of K/k which satisfies td(Kv/k) = td(K/k) —r and for which there
exists a chain of valuations v; < ... < v, :=v. If r = 1, then v is a prime divisor. A
prime r-divisor satisfies v = v, o... o v; where v; is a prime divisor of K and v;y; is a
prime divisor of Kwv; for all i > 1.

2.3. Notation. For a valuation v of K/k, denote by T, < II% its (abelian) inertia group
and by Z, < II% its (abelian) decomposition group. More precisely, let v'/v be a(ny)
prolongation of v from K to K’ and let T, = T/, and Z, = Z,,. For any prime
(r-)divisor v, the group Z, endowed with T, is an (r-)divisorial subgroup of 11%. And for
any v, there is an exact sequence

(1) 1-T,— Z, > 1%, — 1.

We have v = w if and only if T,, = T, if and only if Z, = Z,,, and v < w if and only if
T, C T, if and only if Z, D Z,. If v < w, there are exact sequences

1 =T, =Ty = Typw—1

and
1 =T, = Zy = Zypw — 1.

For a prime r-divisor v, we have T, ~ Zj (or more precisely, T, ~ T x where T  is the
(-adic Tate module of K*). If v is a prime r-divisor, w is a prime s-divisor, and v < w,
then T,,/T, ~ Z;".

2.4. Definition (Flags of divisors/divisorial subgroups).

(1) A flag of prime r-divisors is a sequence v; < ... < v, such that each v,, is a prime
m-divisor of K/k for 1 <m <.

(2) To a flag as above one associates a flag of r-divisorial subgroups, which is a se-
quence Z,, > ...> Z,, of the corresponding decomposition groups, endowed with
a sequence 1, < ... <T, of the corresponding inertia groups.

2.5. Lemma. [2, Proposition 4.2, (1) and (2)] Let v be a prime r-divisor of K/k and
let v denote a prolongation to K", with inertia resp. decomposition group Ty C Zz and
residue field K"v/Kwv. The following hold, cf. Notation 2.5.

(1) Then Ty ~ Zj and Zz ~ Ts x Gal(K"v/Kv).

(2) We have T, ~ Ty and Gal(K"v/Kv) — 1%, .

2.6. Definition ((Divisorial) inertia elements).

(1) An element o € I1% is an inertia element if there is a valuation v of K such that
o € T,,. These elements form the closed subset In(K') C I1%.

(2) Restricting to valuations which correspond to prime divisors yields the divisorial
inertia In.0iv(K) C In(K). Since the divisorial valuations are dense in the space
of all valuations [5, Theorem BJ, In(K) is the topological closure of Jn.div(K)
in II%.
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2.7. Definition (Core of a valuation). Let v be a valuation of K and choose A such that
K C K% C A C K'. Let ¥, 5 be the set of coarsenings w of v such that Gal(K'/A) C T,,.
Then let 77, := %3, U {v} and define vy := inf ¥, to be the abelian pro-¢ A-core of v;
its valuation ring is the union of all valuation rings &, with w € 77,,.

2.8. Proposition (Properties of vy). [2, Propositions 2.4 and 2.5/

(1) If A # K’ is a proper subextension, then vy is nontrivial.

(2) Ifw € ¥, then any prolongation w' to K' satisfies Aw' = (Kw)', where the latter
is the mazimal pro-¢ of Kw. And if any vy satisfies vi < vy then Av] # (Kvy)'.

(3) If v is a prime divisor, then v = Vgz, .

(4) If vy, v are valuations such that K% K%2 C A # K’ (in particular the valua-
tions are not independent and have a common coarsening) then vy n and vop are
comparable.

3. Commuting-liftable elements

3.1. Definition (Commuting-liftable). For ¥ = (0;); C I1%, let Ay C II% be the closed
group it generates. For any closed subgroup G C I1%, let G’ be its preimage in 15, under
pr: 15 — 11%.
(1) X is commuting-liftable if A% is abelian. In fact, any subgroup G of II% is
commuting-liftable if G’ is abelian.
(2) A family (A;); of closed subgroups of 11§ is commuting liftable if [A}, Al] = {1}
for all i # j.

3.2. Remark. The following things follow immediately from Definition 3.1

(1) For T C Z inside I1%, both T and (T, Z) are commuting-liftable if and only if
T C Z(Z'), where Z(Z') denotes the centre of Z’.

(2) Any closed subgroup Z of II% has a unique maximal closed subgroup T that
satisfies the above equivalent conditions, namely T = pr(Z(2")).

(3) For any prime r-divisor v of K, both T, and (7, Z,) are commuting-liftable; this
follows from Lemma 2.5. In fact, T;, is the unique maximal subgroup of Z, such
that both T, and (7, Z,) are commuting-liftable, for T = Z(Z!).

3.3. Lemma. [2, Proposition 4.2(3)(b)] Let v be a prime r-divisor of K/k, where
td(K/k) = d. Then Z, contains commuting-liftable subgroups ~ Z%, and Z, is the mazi-
mal closed subgroup of 11, containing commuting-liftable subgroups T' ~ 7Zj, such that T
and (T, Z) are both commuting-liftable; cf. Remark 3.2(3).

The link between commuting-liftable elements and valuations is provided by the fol-
lowing proposition.

3.4. Proposition. [6, Corollary 6.4.2] If o,7 € I1% are commuting-liftable and (o, T) is
not pro-cyclic, then there exists a valuation v of K such that {o,7) C Z, and such that

(o,7)NT, # {1} (and char(Kv) # ().

3.5. Proposition. [2, Fact 3.3 and Proposition 3.4/

(1) For every inertia element 1 # o € 11%, let A = (K")?. Then there is a minimal
valuation v, with respect to which o is an inertia element, namely, the abelian
pro-f A-core of any (i.e. every, by comparability of cores from Proposition 2.8(4))
valuation v such that o € T,. This is called the canonical valuation for o.

(2) For a family ¥ = (0;); of commuting-liftable inertia elements, one can form the

supremum vs, = sup; v,, of their canonical valuations. Then o; € T,,, for alli.
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(3) For Z C11% a closed subgroup, let 7 = (0;); be all inertia elements o; € Z such
that (o;, Z) is commuting-liftable for alli. Then Z C Z,, and ¥z = Z N T,,.

3.6. Corollary. /2, Proposition 3.5/

(1) Let A C II% be a commuting-liftable subgroup. Then A contains a subgroup %
of inertia elements such that A/% is pro-cyclic (potentially trivial). Hence, there
exists a valuation vy, such that A C Z, and ANT,, = 3.

(2) For every closed subgroup Z C 1%, consider the maximal subgroup ¥, C Z such
that both X7 and (Xz,Z) are commuting-liftable. If ¥, # Z, then ¥z is unique
with these properties and consists of all inertia elements o € Z such that (o, Z)
1s commuting-liftable. In particular, Z C Z,,, and Xz = Z N'T,,,.

4. Divisor graphs and decomposition graphs

4.1. Definition (Divisor and decomposition graphs).

(1) The vertices of the total prime divisor graph 2" are the residue fields of all prime
r-prime divisors of K/k. Its edges are non-oriented self-edges (corresponding to
the trivial valuation) and oriented edges Kv — Kw if v = v, o... 0 v; and
w=wgo...owp such that s=r+1and v; =w; forall 1 < < r.

(2) A geometric prime divisor graph P C D5 is a connected subgraph for which all
non-trivial edges originating in a vertex Kv are all prime divisors corresponding
to a particular quasi-projective normal model of K /k. Any maximal branch has
length td(K/k) and starts at the vertex K.

(3) The vertices of the total decomposition graph Yoo are the pro-£ groups I, for all
generalised prime divisors of K/k. If there exists an edge from Kv to Kw in 2},
then there exists an edge from I1%, to 1%, endowed with the data T/, C Z, /.

(4) A geometric decomposition graph 9y, is a subgraph of %@?t, corresponding to a
geometric prime divisor graph P C 72"

(5) The vertices of a level-0 pro-£ abstract decomposition graph 4 (with origin G = Gy)
are pro-{ abelian groups G;. Every edge is called a valuation and it is labelled with
a pair of pro-¢ groups T,, C Z, (called the inertia resp. decomposition groups). In
particular, every vertex (; has a unique non-oriented self-edge (called the trivial
valuation), labelled with {1} = T,,o and Z,,0 = G;, and these are the only cycles
in the graph. And for 7 # j, there exists at most one oriented edge G; — G;
(called a non-trivial valuation), labelled with subgroups 7,, C Z,, of G, such
that T,, ~ Z, and Z,,/T,, = G;; maximal branches of these have length §. For
Gj — Gi and Gj — Gy (with @ # ') we have Z,, N Z,, = {1} = T,, N T,;.
Finally, for each Gj, there exist systems (L), of cofinite subsets of oriented
edges originating at G, such that every finite subset of such edges is contained
in the complement of some ; , (the system is cofinal), and such that the closed
subgroup Ty, , = (T, : v; € $h; o) satisfies T, N Ty, . = {1} for all 7 and v; & £ ,.

(6) For ¢ as in the previous item, consider the valuations v of G = G, with inertia
groups T,,. Now ¥ is complete curve-like if each T, has a generator 7, such that
the system J = (7,), satisfies [[, 7, = 1 as its only pro-relation. (Any two such
systems must be fixed (-adic unit powers of each other.)

(7) An r-residual abstract decomposition graph ¥, is the unique maximal connected
subgraph of ¢ with origin G, = G, for some v = (v,,...,v1) a path of length r
originating at Gg. It has level § — r. Note that v is a prime r-divisor.

We say that ¢ as in (5) is level-6 complete curve-like if all its level-(d — 1) residual

subgraphs are complete curve-like.
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4.2. Proposition (Geometric decomposition graph is abstract decomposition graph).
A geometric decomposition graph g, is a level-0 pro-f abstract decomposition graph for
§ < td(K/k). (This follows immediately from the definitions and standard valuation
theory.)

4.3. Definition (Abstract divisor group and divisorial decomposition graph).

(1) For any valuation v of Gy = G, let T, be its inertia group, and define KTU =
HOIII(TU,Z() and Ay = Hom(Gy,Zy). The l-adic abstract divisor group of ¢ is
DlVg = @vAT It sits inside an exact sequence

(2) 0—>Uw—>Ag—>Dng—)€[g—)O

where Uy = Hom(Gy/(T, : v valuation of G),Z,) is the unramified part of Ay and
Q:[g is the (-adic abstract divisor class group of 9.

(2) Let 3 = (7,), be a system of inertia generators (for all valuations v of Gy = G)
whose only relation is [ [, 7, = 1, as before. Let .%; be the abelian pro-/ free group
on J; then Hom (%5, Zy) ~ Divg. Construct a corresponding system B = (h0)o
of ¢, € Hom(%#;,7Zy) such that ¢,(7,) = 1 if v = w and ¢,(7,) = 0 otherwise.
Now define the lattice Divy = (B)«) C ﬁi\v% it is a free Z»-module which is
(-adically dense in I/);fgg. In particular it satisfies Divy ® Z; = ©,Ar,. Any two
such lattices are f-adically equivalent, i.e. they are equal up to multiplication by
an f-adic unit. Its preimage Ay (cf. (2)) in Ag is a Uy-lattice.

Such a lattice may not exist. If it does, and if Divy, exists for all residual abstract
decomposition graphs ¢, and some other technical conditions hold [3, Fact 8 and

Definition 9|, then Divy := Divy is called an abstract divisor group, and ¥ is
a divisorial abstract decomposition graph. Equation (2) yields the commutative
diagram
0 ; (A]g > Ny > Divy > Cly > 0
® I |
0 y Uy s Ay » Divy s Cly > 0.

4.4. Definition (Morphisms of abstract decomposition graphs).

Let & and JZ be two abstract decomposition graphs, of levels d¢ and 9 ., with origins G|
and H, trivial valuations vy and wy, and 1-residual abstract decomposition subgraphs
¢, and 7, respectively.

Let & : Gy — Hj be a continuous group homomorphism. We say that wgy corresponds to
v if and only if ®(T;,) = 1 and ®(Z,) is open in Hy.

More generally, w = (ws, ..., w;) = (0, w;) corresponds to v = (vy,...,v1) = (b1, v1) if
either ®(7,,) = 1 (then in fact w corresponds to vy), or ®(T,,) # 1 but @(T ) € Ty, and
®(Z,,) C Z,, are open subgroups (then to; corresponds to ).

For any 0 < d, d ¢, we inductively define a level-6 morphism ® : ¢ — -

(1) A level-0 morphism is a group homomorphism ® : Gy — Hj such that wq corre-
sponds to vy.

(2) Almost all 1-residual vertices of . correspond to some (finitely many) 1-residual
vertices of ¢. If wy corresponds to a 1-residual edge v, then there is a level-0
morphism &, : 4, — . And if a 1-residual edge w corresponds to a 1-residual
edge v, then there is a level-(§ — 1)-morphism @, : ¥4, — J72,.

5



We say @ is proper if each w corresponds to some v and if, for every 1-residual edge v
of 4 and w = ®(v), the residual morphism ®, : ¢, — ., is proper. Then JZ is a
level-0 quotient of ¢ via ®, and for any v and w corresponding to each other under ®
the residual morphism is proper.

Finally, we say that ® is divisorial if all residual morphisms &, : 4, — #, (with w of

length < 0) satisfy ¢A>(/AX,f) C Ay. Note: there may be non-divisorial morphisms between
divisorial abstract decomposition graphs.

4.5. Lemma. Let ® : 4 — I be a level-6 morphism of abstract decomposition graphs.
Then this induces an injective Kummer morphism gg : /AX,% — /A\g and injective residual
Kummer morphisms gEv : /A\,fw — /A\% (for all w such that 6, < 0).

Morever, since ®(T,) C T, is open, if we let v and w be 1-residual vertices and choose
mertia genemtors T, and Ty, then ®(1,) = 700w for a umque Qpw € Zy.

The map gb i turn induces a morphism diveg : Dlvj;o — DlV(/

4.6. Lemma. [3, Proposition 30] Let ® : 4 — H be a level-§ morphism of abstract
decomposition graphs. If ®, : 4, — H,, is divisorial for all w of length 6,0 — 1, then ® s
divsorial. If ® is an isomorphism, then it is divisorial, and ¢ is also an isomorphism.

5. Rational quotients

5.1. Definition (Rational quotients).

(1) For a level-1 complete curve-like abstract decomposition graph ¢, and a system
Jo = (7y)s of generators (cf. Definition 4.1(5,6)), the sequence in (2) becomes

(4) 0 — Uy, — A5, — Divs, — Cly, =~ Zy — 0.

Then ¥, is rational if (7% =0.

(2) Starting from a morphism &, : 4 — ¥,, let b .//iw — Ay be the induced
Kummer morphism and let K ¢a(Ag ) C Ag Then &, is a mtwnal quotzent
of ¢4 if ¢, is rational, ®, is divisorial, and for all v such that A C Uv, then A
gets mapped injectively to A(g

(3) A set i of rational quotlents of & is ample if Aa N Ay =0 for any @, #+ ®, in U,
and if Ay := Zcp cy Ao is f-adically dense in A(p and satisfies Ay N ﬂ(g = 0.

(4) If & is ample, then ¥ is geometmc like with | respect to i if for every «, a’ there
exists a valuation v such that Aa,Aa/ C UD7 and A and Aa/ have the same
(injective) image inside Ag.

(5) Let @ : 4 —  be a level-6(= dy) proper morphism of geometric-like (with
respect to 4 and B, respectively) abstract decomposition graphs. Then & is
compatible with rational quotients if for each Wz € B, there exist &, € 4 and
Do 50 G — A5 such that the following diagram commutes:

g > s

(5) l‘I’a l‘l’a
G 0 Ay

~

5.2. Remark. |[3, Fact 32(2)] It can be shown that A, := ¢,(Ag,) can be group theo-

retically recovered from (A, and) Ag.
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5.3. Proposition. [3, Proposition 35| Let ® : 4 — S be a level-0(= 6y) proper
morphism of geometric-like abstract decomposition graphs, which is compatible with the
rational quotients L and B. Then & is divisorial.

5.4. Definition (Rational quotients — geometric approach). For ¢ € K non-constant, let

K, = k:(t)K be the relative algebraic closure of k(t) in K. The prime divisors of K;/k are
in bijection with the closed points of its unique normal model X; — k, so Zx = 22" is
the unique maximal geometric prime divisor graph. The embedding K; — K induces a
projection P, : I3 — II%, and level-1 morphisms Py, : 95, — ¥y, for any geometric
decomposition graph Zg of K/k. Then @k, is a rational quotient of P in the sense of
Definition 5.1 if and only if K; is a rational function field, cf. |3, Proposition 41].

5.5. Definition (General elements and Bertini sets).

(1) We call t a general element of K if WK = k(t).

(2) If z,t € K are algebraically independent over k and x is general (separable would
suffice), then a “birational Bertini” argument shows that the elements t, = azx + ¢
and ty o =t/(d'x +a) and tyr oo = ("t +d'v +a+1)/(t + d’x + a) are general
for almost all a,d’,a” € k. These elements are general elements of Bertini type.

(3) A set ¥ C K* is a Bertini set if it contains all ¢, 1y 4, ter oo for all z,t € K
algebraically independent and x separable.

(4) Let g = {Pg,}k, be the set of rational quotients of ¥y, where K; = k(t) is
generated by a general element ¢. A subset U C Uy is of Bertini type if it contains
Uy, = {Pg, : x € X} for a Bertini set ¥ C K*.

5.6. Proposition. [1, Proposition 5.3(1)] Every abstract rational quotient (cf. Definition
5.1) is geometric (cf. Definition 5.4). That is, for every abstract rational quotient ®,, :
Goror — Gy there exist a geometric rational quotient P, : Gyror — G, for some general
element v € K, and an isomorphism @k, : Yo — Yoy, such that P, = Po x, 0 Py

5.7. Proposition.

(1) The embedding Ky — K commutes with (-adic completion.
(2) Suppose that there is an embedding of function fields v : L/l — K/k. The diagram

o
g-@x — g_@L

(6) l‘?KI l‘lIKy

Pr, K
G, — Y,

(cf. Diagram (5)) commutes for any rational quotient K, of K and all rational

quotients K, of L such that L(Ky)K = 1(K).

(3) If () = k and K/u(L) is separable, then general elements of Bertini type are
mapped to general elements of Bertini type.

(4) Hence, in this case, if we have a proper morphism ®, : 9y, — A%, of complete
reqular-like abstract decomposition graphs, then ®, is compatible with some Bertini
type sets b and B of rational quotients.

(5) A complete reqular-like geometric decomposition graph 9y, endowed with a Bertini-
type set 3 of rational quotients is a geometric-like (cf. Definition 5.1(4)) abstract

decomposition graph.
7



6. Global theory

6.1. Idea. We can (Galois) group theoretically characterise geometric decomposition
graphs ¥z, inside Gyt

e A connected full subgraph ¥ C @y is a geometric decomposition graph if and
only if every vertex Kv of ¢ corresponds to a geometric set of prime divisors D,
and all maximal oriented branches of ¢ have length td(K/k).

e When td(Kv/k) = 1, a non-empty set D, of prime divisors of Kv/k is geo-
metric if and only if 1%, /Tp, is topologically finitely generated, where Tp, =
(T, st. w € D,). For higher transcendence degrees, similar conditions are
obtained by induction.

e Hence, geometric sets of prime divisors of Kv/k can be recovered from ¥ ., .

e We can group theoretically recover %@}{ot from %@}{ot as the subgraph corresporvlding
to valuations w > wv. ’

e Hence, geometric sets of prime divisors of Kv/k can be recovered from %%?t.

These determine geometric decomposition graphs ¥, .

6.2. Definition (Complete regular-like). A geometric set Dx of prime divisors for K/k
is complete reqular-like if three technical conditions hold on the completed class group
Cl(D). For instance, Dy is complete regular-like if X — k is a complete regular variety
(but the converse is not true in general).

A level-§ geometric prime divisor graph Zg and its geometric decomposition graph ¥,
are said to be complete regular-like if for every vertex v such that td(Kv/k) > 0, the set
D, of non-trivial valuations of Kv inside & is complete regular-like.

Every geometric prime divisor graph is contained in a complete regular-like one.

6.3. Proposition. [3, Proposition 22] The complete reqular-like decomposition graphs
Yg)c can be group theoretically recovered from Ggor.

Sketch of the proof. As mentioned in Idea 6.1, for any vertex Kv of Pk, we can group
theoretically recover %@% from Y. In particular, we recover the inertia groups T, for
prime divisors w of Kv/k and the closed subgroup T, they generate. These data allow
us to check (by comparing Tk, to Tp,, among other things) whether ¥, is complete
regular-like. U

6.4. Lemma. If a geometric decomposition graph 9y, is complete reqular-like, then as a
level-6 pro-{ abstract decomposition graph (cf. Proposition 4.2(8)) it is divisorial (cf. Def-
inition 4.3).

6.5. Lemma. [3, Proposition 11] If 9 is a level-§ complete curve-like (cf. Definition
4.1(7)) abstract decomposition graph and satisfies another technical condition (of being
ample up to level §), then any two abstract divisor groups Dive, Divy are (-adically
equivalent (i.e., there exists € € Z, such that Divy = € - Divy ) inside Divy. (Then the
corresponding inertia generator systems J, 3" are also (-adically equivalent.)

6.6. Lemma. [3, Remarks 19] Let 9y, be a level-0 pro-¢ abstract decomposition graph
with origin G = 119%.. Let ]\\%K := Hom(I1%,Z,) and recall Definition 4.3. Choose a
normal model X — k of K/k such that Dx is the set of 1-residual edges of Py ; then this
comes with an exact sequence

(7) O—>(7D—>[A(—>51;D—>@[(D)—>O
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which we can identify term-by-term with the sequence in (2), to give a geometric in-
terpretation for each of the objects appearing there. In particular, by Kummer theory,
Ay, =K.

6.7. Idea. To recover K*/k* from K , it will be key to construct a suitable arithmetic
divisorial lattice @,Z)v (i.e., an abstract divisor group, cf. Definition 4.3) which fits into
a short exact sequence

0= (K*/kE™) ) = ®uZyv — (Pic)@ — 0.

Let A be the preimage of ®,Z)v under (Ay ~)K — Divy. Then A will contain K* [k,
and the cokernel of K*/k* < A should be ¢*°-torsion.

6.8. Idea (An embedding of function fields induces a morphism of abstract decomposition
graphs). [3, Proposition 38|
e Let k£ and [ be two algebraically closed fields of characteristic # ¢ and let
t: L/l = K/k be an embedding of function fields such that ¢(l) ~ k and K/u(L)
is separable. Then ¢ induces a surjective morphism ¢, : Zi°* — Zi°t.
e A prolongation ¢/ : L’ — K’ induces a canonical surjective map @, : 1% — II9.
For v, w valuations of K, L respectively, inertia generators 7,7, are related via
b, (1,) = riviwl]
o If K/u(L) is finite (hence algebraic), then ¢, also maps geometric decomposition
graphs surjectively to geometric decomposition graphs. Otherwise (replacing ¢(L)

by «(L )K if necessary), K/u(L) is regular. By carefully choosing our models for
K and L, we can prove that for geometric decomposition graphs Zx and &,
there exists a unique maximal geometric subgraph %) C %k such that there
is a morphism ¢, : I — Zr. And for some geometric decomposition graphs
2% 2 Py and 29 O Ir, the map ¢, : 2y — DY is surjective.

e Hence, ¢ induces a level-td(L/l) morphism ®, : 95, — ¥, of abstract decompo-
sition graphs.

o If ¢, is proper, then ®, is proper. And if ®, is proper and ¥y, , 95, are complete
regular-like, then @, is divisorial (cf. Lemma 6.4).

e The map ¢ deﬁnes P, unlquely, thlle ®, determines ¢ up to Frobenius twist. This
follows from the fact that ¢ : L — K is the (-adic completion of ¢, and from
Lemma 6.5.

With this idea in mind, we start proving the converse by deducing the following from
our previous results:

6.9. Proposition. /3, Proposition 39| Let ® : Gy — Hyo be an isomorphism of total
decomposition graphs.

(1) For each geometric decomposition graph 9y, for K/k, there exists a geometric
decomposition graph 9y, for L/l such that ® : 9y, — Gy, is an isomorphism.

(2) The graph 9g,. is regular-like if and only if 9y, is reqular-like. If this is the case,
then ® is diwvisorial.

Sketch of proof. By Proposition 6.3, the (complete regular-like) decomposition graphs
Y, and A7, can be group theoretically recovered from &gt and Ao respectively, in
such a way that ® restricted to ¥y, is an isomorphism. By Lemma 6.4, the graphs ¥,
and .77, are divisorial as abstract decomposition graphs. Using Lemma 4.6, one shows

that ® is divisorial. O
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6.10. Remark. Proposition 6.9 in particular implies that to recover (an isomorphism
between) function fields from (an isomorphism between) total decomposition graphs, it
suffices to start with (a divisorial isomorphism between) complete regular-like geometric
decomposition graphs. Viewing these (complete regular-like) geometric decomposition
graphs as (divisorial) abstract decomposition graphs, Proposition 5.7(4) implies that such
an isomorphism is always compatible with some Bertini type sets of rational quotients.

6.11. Theorem (Main theorem of global theory).

Let K/k and L]/l be function fields of transcendence degrees > 1, with complete regular-like
geometric decomposition graphs Gy, and H#y, (viewed as geometric-like abstract decompo-
sition graphs) endowed with Bertini-type sets 34 and B of rational quotients, respectively.
Let ® : 9y, — 5, be a proper morphism compatible with B and U, induced from an
open group homomorphism ® : 115, — IIf.

Then there exists an (-adic unit €, and an embedding ¢ : L/l — K/k of function fields
which induces a morphism @, : Yy, — 5, as in Idea 6.8, such that ® =e€- P,.

If «(1) = k then v is unique up to Frobenius twists.

Outline of proof. Let ji : K* — K resp. jr : L* — L denote the f-adic completion
functors, and define Kj) := jx(K™) ® Zq) and L, := ji(L*) ® Zy). Without loss of
generality, we may assume that the Kummer morphism gg A Sy, = L — /A\g_@K =K
maps L(Xé) isomorphically to K (Xe).

For @k, € U corresponding to ®x, € B, let K, ) C l/(\m and K, C [/(\y be the unique
respective divisorial lattices such that ([ASKI(KL(@)) C K and QASKy(K%(g)) C L. Then it
follows (from Proposition 5.7, among other things) that Qg(Kyy(g)) = K, ). Without loss
of generality, we may assume that ggo Jjr(y) = ji(x), in which case gg induces a bijection
Ju(K) = oK),

Let My := ¢(jL(L*)) Njx(K*) and My = ¢~ (Mg) C j(L¥). Then ¢ : My, — My is
an isomorphism mapping jz(K,‘) isomorphically to jx (/K)).

Now let Ky = j' (Myg)U {0} C K and Ly = j;'(Mp) U {0}. Then these are function
subfields. (One needs to check they are closed under addition, cf. [3, Lemmas 49 and
50].

Tlle) connection to projective geometry follows from the fact that My = jr(K;) =
Kj/k* = P(Ky) and M = P(Lg). These projective spaces are mapped bijectively to
each other under ¢ := (;3|P(LO).

A line in ]P)(KO) is [t07t1 = (kt0+l€t1)x/kfx = to : ((k‘(tl/to) + k)x/kx) = t() jK(k’t—f—k’)X for
some to and ¢; linearly independent and ¢ = t; /ty; thus, the line only depends on jg (o)
and jg(t1). Similarly one considers lines in P(Ly).

The map ¢ maps lines in P(Lg) bijectively to lines in P(Kj), cf. [3, Lemma 51].

Now the statement follows from applying Artin’s fundamental theorem of projective ge-
ometries, after applying a suitable scaling. The existence of € follows from Lemma 6.5.
Uniqueness up to Frobenius twist follows from the fact that L/Lg is purely insepaArable,

cf. [3, Lemma 52[; to prove this, one uses the observation that M ® Z) = L(XZ) cL 0O

10



7. Local theory

7.1. Theorem. [2, Theorem 4.4/
Let pr : TS, — 1% be the projection map and for any subgroup G C 1%, let G = pr—1(QG).
(1) The transcendence degree td(K/k) can be recovered from 115 as the maximal in-
teger d for which there exists a closed subgroup A C 1% such that A ~ Z¢ and A
1s commuting-liftable.
(2) Choose an integer r < d := td(K/k) and T C Z closed subgroups of 11%.. Then
T C Z is an r-diwvisorial subgroup of 113 if and only if Z is mazximal among the
closed subgroups of 115 such that:
(a) the group Z contains a closed subgroup A ~ Z$ such that A is commuting-
liftable;
(b) the group T ~7Zj and T' = Z(Z').

Sketch of proof.

(1) If A is a commuting-liftable non-pro-cyclic subgroup of 1%, then by Corollary
3.6(1), there exists a valuation v such that A C Z, and A/(ANT,) is pro-cyclic.
Now the proof follows from Notation 2.3 and Abhyankar’s inequality rank(vK') +
td(Kv) < td(K/k).

(2) One direction follows from Remark 3.2(3) and Lemma 3.3. We prove the converse.

Again by Corollary 3.6(1), there exists a valuation vy such that Z C Z,, and
T=2nNT,. Take A = (K’)T and let v be the abelian pro-¢ A-core of vy.

Let A be a maximal commuting-liftable subgroup of Z such that A ~ Z¢. (Note
that necessarily 7' C A, by maximality of A.) Applying Corollary 3.6(1) to A
yields a valuation va such that A C Z,,; let w be its abelian pro-¢ A-core.

By comparing (the maximal pro-¢ extensions of) their residue fields, it follows
that v = w. By construction, 7' C T, and Z C Z,, so by maximality of T" and Z,
these groups are equal, as required.

O
7.2. Corollary.

(1) The r-divisorial subgroups can be group theoretically recovered from 115 (hence
from 115, ). In fact, an isomorphism 11% — II¢ induced from an isomorphism
15 — 11§ bijectively maps (flags of ) r-divisorial subgroups to (flags of ) r-divisorial
subgroups.

(2) A sequence Zy > ... > Z, of closed subgroups of 1%, with a corresponding sequence
T, < ...< T, of closed subgroups T; C Z; is a flag of r-divisorial subgroups if
and only if the groups are maximal such that the following hold:

(a) each Z; contains A ~ 7% such that A is abelian;
(b) each T; satisfies T; C IN(K) and T; ~ 7} and T} = Z(Z}).

(3) For any r-divisor v of K/k, the r-divisorial subgroups of 115, are exactly the
images under Z, — 1%, (cf. (1)) of the r-divisorial subgroups Z C Z, endowed

with T D T,.
(4) Hence, the total decomposition graph %@?t can be group theoretically recovered
from 1% .

7.3. Proposition. [1, Proposition 5.3(2)] Any isomorphism of total decomposition

graphs ® : g@?t — %@Eot is compatible with (geometric) rational quotients. That is,

for each geometric rational quotient ®p, : A — %gLy, the morphism ®, := &, o ®

determines a(n abstract, hence by Proposition 5.6 a) geometric rational quotient of %@?t.
11



Sketch of proof. 1t follows from Proposition 6.9(1) and Idea 6.1 that for every v € Pk
which is mapped to w € 7, the residual morphism ®,, : 95, — 7, , is an isomorphism.

By

Lemma 4.6, each ®, is divisorial. So after dualising, each by + LwX — KvX is an

isomorphism, and there is a commutative diagram

(8)

¢ —_—

—_—
Ug@Lw - Ug@KU

| J

Lw* L) Kux

If v and w are 1-vertices, then we also obtain a commutative diagram

(9)

for

I//; E— Zg
l@g lavw
f(\x e Z@

some @y, € Z. Using these diagrams, one checks that @, := & o ® is surjective,

divisorial, and determines a rational quotient, cf. Definition 5.1. U

7.4. Remark.

[1]
2]
3]

4]

5]

[6]

(1) Since we are assuming that k is the algebraic closure of a finite field, it only carries
the trivial valuation. In particular, the quasi prime r-divisors of [1] are just prime
r-divisors as in Definition 2.2.

(2) Tt is possible to determine from I1% whether k is the algebraic closure of a finite
field, since this is equivalent to the fact that there are generators 7, for all r-
divisorial inertia groups T, such that [[, 7, = 1 is the only pro-relation on the
system (7 )w, cf. [1, Lemma 4.2].
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