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1. Introduction and set-up

Let ` be a prime number and let k be an algebraically closed field with char(k) 6= `.
Let K/k be a function field of transcendence degree td(K/k) > 1 with absolute Galois
group GK .

Take G(1)
K = GK and for all i ≥ 1, let G(i+1)

K = [G(i), G(1)](G(i))`
∞ . In other words, the

groups {G(i)
K }i≥1 form the descending central `∞-series of GK .

Then
Πa
K = G(1)/G(2) = Gal(K ′/K)

is the Galois group of the maximal pro-` abelian extension K ′ of K, and

Πc
K = G

(1)
K /G

(3)
K = Gal(K ′′/K)

is the Galois group of the maximal pro-` abelian-by-central extension K ′′ of K. Note
that the projection map pr : Πc

K → Πa
K has kernel [Πc

K ,Π
c
K ], and therefore Πa

K can be
group theoretically recovered from Πc

K .
We will prove the following theorem, following the results of Pop in [1–3].

1.1. Theorem. [1, Theorem I] Assume that k = k is the algebraic closure of a finite
field. With the notation as above, K/k can be group theoretically recovered from Πc

K.

The proof consists of two parts:
• The local theory: starting from Πc

K , this yields the decomposition groups and
inertia groups in Πa

K corresponding to prime divisors (valuations) of K/k. The
output of the local theory is the so-called total decomposition graph GDtot

K
of K/k,

together with its rational quotients; cf. Corollary 7.2 and Proposition 7.3.
• The global theory: starting from GDtot

K
and some of its (rational) quotients,

this yields the projective space P(K) = K×/k× inside K̂ = Homcont(Π
a
K ,Z`),

together with all projective lines. Using Artin’s fundamental theorem of projective
geometries, one recovers K/k from this; cf. Theorem 6.11.

1.2. Remark. The paper [4] proves a generalisation of Theorem 1.1: if td(K/k) >
dim(k)+1 (where dim(k) denotes the Kronecker dimension of k), then K/k can be group
theoretically recovered from Πc

K/k. Since dim(k) = 0 if and only if k is the algebraic
closure of a finite field, this implies Theorem 1.1.

Let the divisorial inertia In.div(K) of K be defined as in Definition 2.6. The proof
in [4] works as follows: first, [4, Theorem 1.2(2)] group theoretically recovers In.div(K)
from Πc(K) if td(K/k) > dim(k). Then [4, Theorem 1.1(1)] recovers K/k from Πc(K)
endowed with In.div(K), again by first recovering the total decomposition graph GDtot

K

and then reconstructing the projective space P(K) and projective lines.
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2. Valuation theory

2.1. Notation. For any valuation v of K/k (that is to say, a valuation of K which is
trivial on k), let Kv be its residue field, vK be its value group, and Ov its valuation ring.
Valuations are ordered by v ≤ w ↔ Ow ⊆ Ov. Then v is a coarsening of w, and w is a
refinement of v by some valuation v0 = w/v on Kv. In other words, w = v0 ◦ v is the
valuation theoretic composition of v and v0.

2.2. Definition (Prime r-divisors). A prime r-divisor or generalised prime divisor of
K/k is a valuation v of K/k which satisfies td(Kv/k) = td(K/k)− r and for which there
exists a chain of valuations v1 < . . . < vr := v. If r = 1, then v is a prime divisor. A
prime r-divisor satisfies v = vr ◦ . . . ◦ v1 where v1 is a prime divisor of K and vi+1 is a
prime divisor of Kvi for all i ≥ 1.

2.3. Notation. For a valuation v of K/k, denote by Tv ≤ Πa
K its (abelian) inertia group

and by Zv ≤ Πa
K its (abelian) decomposition group. More precisely, let v′/v be a(ny)

prolongation of v from K to K ′ and let Tv = Tv′/v and Zv = Zv′/v. For any prime
(r-)divisor v, the group Zv endowed with Tv is an (r-)divisorial subgroup of Πa

K . And for
any v, there is an exact sequence

(1) 1→ Tv → Zv → Πa
Kv → 1.

We have v = w if and only if Tv = Tw if and only if Zv = Zw, and v < w if and only if
Tv ( Tw if and only if Zv ) Zw. If v < w, there are exact sequences

1→ Tv → Tw → Tw/v → 1

and
1→ Tv → Zw → Zw/v → 1.

For a prime r-divisor v, we have Tv ' Zr` (or more precisely, Tv ' Tr`,K where T`,K is the
`-adic Tate module of K×). If v is a prime r-divisor, w is a prime s-divisor, and v < w,
then Tw/Tv ' Zs−r` .

2.4. Definition (Flags of divisors/divisorial subgroups).
(1) A flag of prime r-divisors is a sequence v1 ≤ . . . ≤ vr such that each vm is a prime

m-divisor of K/k for 1 ≤ m ≤ r.
(2) To a flag as above one associates a flag of r-divisorial subgroups, which is a se-

quence Zv1 ≥ . . . ≥ Zvr of the corresponding decomposition groups, endowed with
a sequence Tv1 ≤ . . . ≤ Tvr of the corresponding inertia groups.

2.5. Lemma. [2, Proposition 4.2, (1) and (2)] Let v be a prime r-divisor of K/k and
let ṽ denote a prolongation to K ′′, with inertia resp. decomposition group Tṽ ⊆ Zṽ and
residue field K ′′ṽ/Kv. The following hold, cf. Notation 2.3.

(1) Then Tṽ ' Zr` and Zṽ ' Tṽ ×Gal(K ′′ṽ/Kv).
(2) We have Tv ' Tṽ and Gal(K ′′ṽ/Kv) � Πa

Kv.

2.6. Definition ((Divisorial) inertia elements).
(1) An element σ ∈ Πa

K is an inertia element if there is a valuation v of K such that
σ ∈ Tv. These elements form the closed subset In(K) ⊆ Πa

K .
(2) Restricting to valuations which correspond to prime divisors yields the divisorial

inertia In.div(K) ⊆ In(K). Since the divisorial valuations are dense in the space
of all valuations [5, Theorem B], In(K) is the topological closure of In.div(K)
in Πa

K .
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2.7. Definition (Core of a valuation). Let v be a valuation of K and choose Λ such that
K ⊂ KZv ⊂ Λ ⊂ K ′. Let Vv,Λ be the set of coarsenings w of v such that Gal(K ′/Λ) ⊆ Tw.
Then let V 0

Λ,v := VΛ,v ∪ {v} and define vΛ := inf V 0
Λ,v to be the abelian pro-` Λ-core of v;

its valuation ring is the union of all valuation rings Ow with w ∈ V 0
Λ,v.

2.8. Proposition (Properties of vΛ). [2, Propositions 2.4 and 2.5]
(1) If Λ 6= K ′ is a proper subextension, then vΛ is nontrivial.
(2) If w ∈ VΛ,v then any prolongation w′ to K ′ satisfies Λw′ = (Kw)′, where the latter

is the maximal pro-` of Kw. And if any v1 satisfies v1 < vΛ then Λv′1 6= (Kv1)′.
(3) If v is a prime divisor, then v = vKZv .
(4) If v1, v2 are valuations such that KZv1 , KZv2 ⊂ Λ 6= K ′ (in particular the valua-

tions are not independent and have a common coarsening) then v1,Λ and v2,Λ are
comparable.

3. Commuting-liftable elements

3.1. Definition (Commuting-liftable). For Σ = (σi)i ⊂ Πa
K , let ∆Σ ⊆ Πa

K be the closed
group it generates. For any closed subgroup G ⊂ Πa

K , let G′ be its preimage in Πc
K under

pr : Πc
K → Πa

K .
(1) Σ is commuting-liftable if ∆′Σ is abelian. In fact, any subgroup G of Πa

K is
commuting-liftable if G′ is abelian.

(2) A family (∆i)i of closed subgroups of Πa
K is commuting liftable if [∆′i,∆

′
j] = {1}

for all i 6= j.

3.2. Remark. The following things follow immediately from Definition 3.1
(1) For T ⊆ Z inside Πa

K , both T and (T, Z) are commuting-liftable if and only if
T ′ ⊆ Z(Z ′), where Z(Z ′) denotes the centre of Z ′.

(2) Any closed subgroup Z of Πa
K has a unique maximal closed subgroup T that

satisfies the above equivalent conditions, namely T = pr(Z(Z ′)).
(3) For any prime r-divisor v of K, both Tv and (Tv, Zv) are commuting-liftable; this

follows from Lemma 2.5. In fact, Tv is the unique maximal subgroup of Zv such
that both Tv and (Tv, Zv) are commuting-liftable, for T ′v = Z(Z ′v).

3.3. Lemma. [2, Proposition 4.2(3)(b)] Let v be a prime r-divisor of K/k, where
td(K/k) = d. Then Zv contains commuting-liftable subgroups ' Zd` , and Zv is the maxi-
mal closed subgroup of Πa

K containing commuting-liftable subgroups T ' Zr` such that T
and (T, Z) are both commuting-liftable; cf. Remark 3.2(3).

The link between commuting-liftable elements and valuations is provided by the fol-
lowing proposition.

3.4. Proposition. [6, Corollary 6.4.2] If σ, τ ∈ Πa
K are commuting-liftable and 〈σ, τ〉 is

not pro-cyclic, then there exists a valuation v of K such that 〈σ, τ〉 ⊆ Zv and such that
〈σ, τ〉 ∩ Tv 6= {1} (and char(Kv) 6= `).

3.5. Proposition. [2, Fact 3.3 and Proposition 3.4]
(1) For every inertia element 1 6= σ ∈ Πa

K, let Λ = (K ′)σ. Then there is a minimal
valuation vσ with respect to which σ is an inertia element, namely, the abelian
pro-` Λ-core of any (i.e. every, by comparability of cores from Proposition 2.8(4))
valuation v such that σ ∈ Tv. This is called the canonical valuation for σ.

(2) For a family Σ = (σi)i of commuting-liftable inertia elements, one can form the
supremum vΣ = supi vσi of their canonical valuations. Then σi ∈ TvΣ

for all i.
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(3) For Z ⊆ Πa
K a closed subgroup, let ΣZ = (σi)i be all inertia elements σi ∈ Z such

that (σi, Z) is commuting-liftable for all i. Then Z ⊆ ZvΣ
and ΣZ = Z ∩ TvΣ

.

3.6. Corollary. [2, Proposition 3.5]
(1) Let ∆ ⊆ Πa

K be a commuting-liftable subgroup. Then ∆ contains a subgroup Σ
of inertia elements such that ∆/Σ is pro-cyclic (potentially trivial). Hence, there
exists a valuation vΣ such that ∆ ⊆ Zv and ∆ ∩ TvΣ

= Σ.
(2) For every closed subgroup Z ⊆ Πa

K, consider the maximal subgroup ΣZ ⊆ Z such
that both ΣZ and (ΣZ , Z) are commuting-liftable. If ΣZ 6= Z, then ΣZ is unique
with these properties and consists of all inertia elements σ ∈ Z such that (σ, Z)
is commuting-liftable. In particular, Z ⊆ ZvΣ

and ΣZ = Z ∩ TvΣ
.

4. Divisor graphs and decomposition graphs

4.1. Definition (Divisor and decomposition graphs).
(1) The vertices of the total prime divisor graph D tot

K are the residue fields of all prime
r-prime divisors of K/k. Its edges are non-oriented self-edges (corresponding to
the trivial valuation) and oriented edges Kv → Kw if v = vr ◦ . . . ◦ v1 and
w = ws ◦ . . . ◦ w1 such that s = r + 1 and vi = wi for all 1 ≤ i ≤ r.

(2) A geometric prime divisor graph DK ⊂ D tot
K is a connected subgraph for which all

non-trivial edges originating in a vertex Kv are all prime divisors corresponding
to a particular quasi-projective normal model of K/k. Any maximal branch has
length td(K/k) and starts at the vertex K.

(3) The vertices of the total decomposition graph GDtot
K

are the pro-` groups Πa
Kv for all

generalised prime divisors of K/k. If there exists an edge from Kv to Kw in D tot
K ,

then there exists an edge from Πa
Kv to Πa

Kw, endowed with the data Tw/v ⊆ Zw/v.
(4) A geometric decomposition graph GDK is a subgraph of GDtot

K
, corresponding to a

geometric prime divisor graph DK ⊂ D tot
K .

(5) The vertices of a level-δ pro-` abstract decomposition graph G (with originG = G0)
are pro-` abelian groups Gi. Every edge is called a valuation and it is labelled with
a pair of pro-` groups Tv ⊆ Zv (called the inertia resp. decomposition groups). In
particular, every vertex Gi has a unique non-oriented self-edge (called the trivial
valuation), labelled with {1} = Tvi0 and Zvi0 = Gi, and these are the only cycles
in the graph. And for i 6= j, there exists at most one oriented edge Gj → Gi

(called a non-trivial valuation), labelled with subgroups Tvi ⊆ Zvi of Gj such
that Tvi ' Z` and Zvi/Tvi = Gi; maximal branches of these have length δ. For
Gj → Gi and Gj → Gi′ (with i 6= i′) we have Zvi ∩ Zvi′ = {1} = Tvi ∩ Tv′i .
Finally, for each Gj, there exist systems (Ui,α)α of cofinite subsets of oriented
edges originating at Gj, such that every finite subset of such edges is contained
in the complement of some Ui,α (the system is cofinal), and such that the closed
subgroup TUi,α = 〈Tvi : vi ∈ Ui,α〉 satisfies Tvi ∩ TUi,α = {1} for all i and vi /∈ Ui,α.

(6) For G as in the previous item, consider the valuations v of G = G0, with inertia
groups Tv. Now G is complete curve-like if each Tv has a generator τv such that
the system I = (τv)v satisfies

∏
v τv = 1 as its only pro-relation. (Any two such

systems must be fixed `-adic unit powers of each other.)
(7) An r-residual abstract decomposition graph Gv is the unique maximal connected

subgraph of G with origin Gr = Gv for some v = (vr, . . . , v1) a path of length r
originating at G0. It has level δ − r. Note that v is a prime r-divisor.
We say that G as in (5) is level-δ complete curve-like if all its level-(δ−1) residual
subgraphs are complete curve-like.
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4.2. Proposition (Geometric decomposition graph is abstract decomposition graph).
A geometric decomposition graph GDK is a level-δ pro-` abstract decomposition graph for
δ ≤ td(K/k). (This follows immediately from the definitions and standard valuation
theory.)

4.3. Definition (Abstract divisor group and divisorial decomposition graph).

(1) For any valuation v of G0 = G, let Tv be its inertia group, and define Λ̂Tv =

Hom(Tv,Z`) and Λ̂G = Hom(G0,Z`). The `-adic abstract divisor group of G is
D̂ivG = ⊕̂vΛ̂Tv . It sits inside an exact sequence

(2) 0→ ÛG → Λ̂G → D̂ivG → ĈlG → 0

where ÛG = Hom(G0/〈Tv : v valuation of G〉,Z`) is the unramified part of Λ̂G and
ĈlG is the `-adic abstract divisor class group of G .

(2) Let I = (τv)v be a system of inertia generators (for all valuations v of G0 = G)
whose only relation is

∏
v τv = 1, as before. Let FI be the abelian pro-` free group

on I; then Hom(FI,Z`) ' D̂ivG . Construct a corresponding system B = (φv)v
of φv ∈ Hom(FI,Z`) such that φv(τw) = 1 if v = w and φv(τw) = 0 otherwise.
Now define the lattice DivI = 〈B〉(`) ⊂ D̂ivG ; it is a free Z(`)-module which is
`-adically dense in D̂ivG . In particular it satisfies DivI ⊗ Z` = ⊕vΛTv . Any two
such lattices are `-adically equivalent, i.e. they are equal up to multiplication by
an `-adic unit. Its preimage ΛI (cf. (2)) in Λ̂G is a ÛG -lattice.
Such a lattice may not exist. If it does, and if DivGv exists for all residual abstract
decomposition graphs Gv, and some other technical conditions hold [3, Fact 8 and
Definition 9], then DivG := DivI is called an abstract divisor group, and G is
a divisorial abstract decomposition graph. Equation (2) yields the commutative
diagram

(3)
0 ÛG ΛG DivG ClG 0

0 ÛG Λ̂G D̂ivG ĈlG 0.

.

4.4. Definition (Morphisms of abstract decomposition graphs).
Let G and H be two abstract decomposition graphs, of levels δG and δH , with origins G0

and H0, trivial valuations v0 and w0, and 1-residual abstract decomposition subgraphs
Gv and Hw, respectively.
Let Φ : G0 → H0 be a continuous group homomorphism. We say that w0 corresponds to
v if and only if Φ(Tv) = 1 and Φ(Zv) is open in H0.
More generally, w = (ws, . . . , w1) = (w1, w1) corresponds to v = (vr, . . . , v1) = (v1, v1) if
either Φ(Tv1) = 1 (then in fact w corresponds to v1), or Φ(Tv1) 6= 1 but Φ(Tv1) ⊆ Tw1 and
Φ(Zv1) ⊆ Zw1 are open subgroups (then w1 corresponds to v1).
For any δ ≤ δG , δH , we inductively define a level-δ morphism Φ : G →H :

(1) A level-0 morphism is a group homomorphism Φ : G0 → H0 such that w0 corre-
sponds to v0.

(2) Almost all 1-residual vertices of H correspond to some (finitely many) 1-residual
vertices of G . If w0 corresponds to a 1-residual edge v, then there is a level-δ
morphism Φv : Gv → H . And if a 1-residual edge w corresponds to a 1-residual
edge v, then there is a level-(δ − 1)-morphism Φv : Gv →Hw.
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We say Φ is proper if each w corresponds to some v and if, for every 1-residual edge v
of G and w = Φ(v), the residual morphism Φv : Gv → Hw is proper. Then H is a
level-δ quotient of G via Φ, and for any v and w corresponding to each other under Φ
the residual morphism is proper.
Finally, we say that Φ is divisorial if all residual morphisms Φv : Gv → Hw (with w of
length < δ) satisfy φ̂(Λ̂H ) ⊆ Λ̂G . Note: there may be non-divisorial morphisms between
divisorial abstract decomposition graphs.

4.5. Lemma. Let Φ : G → H be a level-δ morphism of abstract decomposition graphs.
Then this induces an injective Kummer morphism φ̂ : Λ̂H → Λ̂G and injective residual
Kummer morphisms φ̂v : Λ̂Hw → Λ̂Gv (for all w such that δw < δ).
Morever, since Φ(Tv) ⊆ Tw is open, if we let v and w be 1-residual vertices and choose
inertia generators τv and τw, then Φ(τv) = τavww for a unique avw ∈ Z`.
The map φ̂ in turn induces a morphism divΦ : D̂ivH → D̂ivG .

4.6. Lemma. [3, Proposition 30] Let Φ : G → H be a level-δ morphism of abstract
decomposition graphs. If Φv : Gv →Hw is divisorial for all w of length δH − 1, then Φ is
divisorial. If Φ is an isomorphism, then it is divisorial, and φ̂ is also an isomorphism.

5. Rational quotients

5.1. Definition (Rational quotients).
(1) For a level-1 complete curve-like abstract decomposition graph Gα and a system

Iα = (τv)v of generators (cf. Definition 4.1(5,6)), the sequence in (2) becomes

(4) 0→ ÛGα → ΛIα → DivIα → ClIα ' Z(`) → 0.

Then Gα is rational if ÛGα = 0.
(2) Starting from a morphism Φα : G → Gα, let φ̂α : Λ̂Gα → Λ̂G be the induced

Kummer morphism and let Λ̂α = φ̂α(Λ̂Gα) ⊆ Λ̂G . Then Φα is a rational quotient
of G if Gα is rational, Φα is divisorial, and for all v such that Λ̂α ⊂ Ûv, then Λ̂α

gets mapped injectively to Λ̂Gv .
(3) A set U of rational quotients of G is ample if Λ̂α ∩ Λ̂α′ = 0 for any Φα 6= Φα′ in U,

and if ΛU :=
∑

Φα∈U Λα is `-adically dense in Λ̂G and satisfies ΛU ∩ ÛG = 0.
(4) If U is ample, then G is geometric-like with respect to U if for every α, α′ there

exists a valuation v such that Λ̂α, Λ̂α′ ⊆ Ûv, and Λ̂α and Λ̂α′ have the same
(injective) image inside Λ̂G .

(5) Let Φ : G → H be a level-δ(= δH) proper morphism of geometric-like (with
respect to U and B, respectively) abstract decomposition graphs. Then Φ is
compatible with rational quotients if for each Ψβ ∈ B, there exist Φα ∈ U and
Φα,β : Gα

∼−→Hβ such that the following diagram commutes:

(5)
G H

Gα Hβ

Φ

Φα Ψβ

Φα,β

5.2. Remark. [3, Fact 32(2)] It can be shown that Λα := φ̂α(ΛGα) can be group theo-
retically recovered from (Λ̂α and) ΛG .
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5.3. Proposition. [3, Proposition 35] Let Φ : G → H be a level-δ(= δH) proper
morphism of geometric-like abstract decomposition graphs, which is compatible with the
rational quotients U and B. Then Φ is divisorial.

5.4. Definition (Rational quotients – geometric approach). For t ∈ K non-constant, let
Kt = k(t)

K
be the relative algebraic closure of k(t) in K. The prime divisors of Kt/k are

in bijection with the closed points of its unique normal model Xt → k, so DK = D tot
K is

the unique maximal geometric prime divisor graph. The embedding Kt ↪→ K induces a
projection ΦKt : Πa

K → Πa
Kt

and level-1 morphisms ΦKt : GDK → GDKt
for any geometric

decomposition graph DK of K/k. Then ΦKt is a rational quotient of DK in the sense of
Definition 5.1 if and only if Kt is a rational function field, cf. [3, Proposition 41].

5.5. Definition (General elements and Bertini sets).

(1) We call t a general element of K if k(t)
K

= k(t).
(2) If x, t ∈ K are algebraically independent over k and x is general (separable would

suffice), then a “birational Bertini” argument shows that the elements ta = ax+ t
and ta′,a = t/(a′x + a) and ta′′,a′,a = (a′′t + a′x + a + 1)/(t + a′x + a) are general
for almost all a, a′, a′′ ∈ k. These elements are general elements of Bertini type.

(3) A set Σ ⊂ K× is a Bertini set if it contains all ta, ta′,a, ta′′,a′,a for all x, t ∈ K
algebraically independent and x separable.

(4) Let UK = {ΦKt}Kt be the set of rational quotients of GDK where Kt = k(t) is
generated by a general element t. A subset U ⊆ UK is of Bertini type if it contains
UΣ = {ΦKx : x ∈ Σ} for a Bertini set Σ ⊂ K×.

5.6. Proposition. [1, Proposition 5.3(1)] Every abstract rational quotient (cf. Definition
5.1) is geometric (cf. Definition 5.4). That is, for every abstract rational quotient Φα :
GDtot

K
→ Gα there exist a geometric rational quotient ΦKx : GDtot

K
→ GDKx

for some general
element x ∈ K, and an isomorphism Φα,Kx : Gα → GDKx

such that ΦKx = Φα,Kx ◦ Φα.

5.7. Proposition.

(1) The embedding Kt ↪→ K commutes with `-adic completion.
(2) Suppose that there is an embedding of function fields ι : L/l→ K/k. The diagram

(6)
GDK GDL

GKx GKy

Φι

ΦKx ΨKy

ΦKx,Ky

(cf. Diagram (5)) commutes for any rational quotient Kx of K and all rational
quotients Ky of L such that ι(Ky)

K
= ι(Ky).

(3) If ι(l) = k and K/ι(L) is separable, then general elements of Bertini type are
mapped to general elements of Bertini type.

(4) Hence, in this case, if we have a proper morphism Φι : GDK → HDL of complete
regular-like abstract decomposition graphs, then Φι is compatible with some Bertini
type sets U and B of rational quotients.

(5) A complete regular-like geometric decomposition graph GDK endowed with a Bertini-
type set U of rational quotients is a geometric-like (cf. Definition 5.1(4)) abstract
decomposition graph.
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6. Global theory

6.1. Idea. We can (Galois) group theoretically characterise geometric decomposition
graphs GDK inside GDtot

K
.

• A connected full subgraph GD ⊂ GDtot
K

is a geometric decomposition graph if and
only if every vertex Kv of GD corresponds to a geometric set of prime divisors Dv

and all maximal oriented branches of GD have length td(K/k).
• When td(Kv/k) = 1, a non-empty set Dv of prime divisors of Kv/k is geo-
metric if and only if Πa

Kv/TDv is topologically finitely generated, where TDv =
〈Tw s.t. w ∈ Dv〉. For higher transcendence degrees, similar conditions are
obtained by induction.
• Hence, geometric sets of prime divisors of Kv/k can be recovered from GD

Ktot
v
.

• We can group theoretically recover GDtot
Kv

from GDtot
K

as the subgraph corresponding
to valuations w ≥ v.
• Hence, geometric sets of prime divisors of Kv/k can be recovered from GDtot

K
.

These determine geometric decomposition graphs GDK .

6.2. Definition (Complete regular-like). A geometric set DX of prime divisors for K/k
is complete regular-like if three technical conditions hold on the completed class group
Ĉl(D). For instance, DX is complete regular-like if X → k is a complete regular variety
(but the converse is not true in general).
A level-δ geometric prime divisor graph DK and its geometric decomposition graph GDK

are said to be complete regular-like if for every vertex v such that td(Kv/k) > 0, the set
Dv of non-trivial valuations of Kv inside D is complete regular-like.
Every geometric prime divisor graph is contained in a complete regular-like one.

6.3. Proposition. [3, Proposition 22] The complete regular-like decomposition graphs
GDK can be group theoretically recovered from GDtot

K
.

Sketch of the proof. As mentioned in Idea 6.1, for any vertex Kv of DK , we can group
theoretically recover GDtot

Kv
from GDtot

K
. In particular, we recover the inertia groups Tw for

prime divisors w of Kv/k and the closed subgroup TKv they generate. These data allow
us to check (by comparing TKv to TDv , among other things) whether GDK is complete
regular-like. �

6.4. Lemma. If a geometric decomposition graph GDK is complete regular-like, then as a
level-δ pro-` abstract decomposition graph (cf. Proposition 4.2(3)) it is divisorial (cf. Def-
inition 4.3).

6.5. Lemma. [3, Proposition 11] If G is a level-δ complete curve-like (cf. Definition
4.1(7)) abstract decomposition graph and satisfies another technical condition (of being
ample up to level δ), then any two abstract divisor groups DivG , Div′G are `-adically
equivalent (i.e., there exists ε ∈ Z×` such that DivG = ε · Div′G ) inside D̂ivG . (Then the
corresponding inertia generator systems I, I′ are also `-adically equivalent.)

6.6. Lemma. [3, Remarks 19] Let GDK be a level-δ pro-` abstract decomposition graph
with origin G = Πa

K. Let Λ̂GDK
:= Hom(Πa

K ,Z`) and recall Definition 4.3. Choose a
normal model X → k of K/k such that DX is the set of 1-residual edges of DK; then this
comes with an exact sequence

(7) 0→ ÛD → K̂ → D̂ivD → Ĉl(D)→ 0
8



which we can identify term-by-term with the sequence in (2), to give a geometric in-
terpretation for each of the objects appearing there. In particular, by Kummer theory,
Λ̂GDK

= K̂.

6.7. Idea. To recover K×/k× from K̂, it will be key to construct a suitable arithmetic
divisorial lattice ⊕vZ(`)v (i.e., an abstract divisor group, cf. Definition 4.3) which fits into
a short exact sequence

0→ (K×/k×)(`) → ⊕vZ(`)v → (Pic)(`) → 0.

Let Λ be the preimage of ⊕vZ(`)v under (Λ̂G ')K̂ → D̂ivG . Then Λ will contain K×/k×,
and the cokernel of K×/k× ↪→ Λ should be `∞-torsion.

6.8. Idea (An embedding of function fields induces a morphism of abstract decomposition
graphs). [3, Proposition 38]

• Let k and l be two algebraically closed fields of characteristic 6= ` and let
ι : L/l ↪→ K/k be an embedding of function fields such that ι(l) ' k and K/ι(L)
is separable. Then ι induces a surjective morphism φι : D tot

K → D tot
L .

• A prolongation ι′ : L′ → K ′ induces a canonical surjective map Φι : Πa
K → Πa

L.
For v, w valuations of K,L respectively, inertia generators τv, τw are related via
Φι(τv) = τ

[vK:wL]
w .

• If K/ι(L) is finite (hence algebraic), then φι also maps geometric decomposition
graphs surjectively to geometric decomposition graphs. Otherwise (replacing ι(L)

by ι(L)
K

if necessary), K/ι(L) is regular. By carefully choosing our models for
K and L, we can prove that for geometric decomposition graphs DK and DL

there exists a unique maximal geometric subgraph D ′K ⊂ DK such that there
is a morphism φι : D ′K → DL. And for some geometric decomposition graphs
D0
K ⊇ DK and D0

L ⊇ DL, the map φι : D0
K → D0

L is surjective.
• Hence, ι induces a level-td(L/l) morphism Φι : GDK → GDL of abstract decompo-
sition graphs.
• If φι is proper, then Φι is proper. And if Φι is proper and GDK , GDL are complete
regular-like, then Φι is divisorial (cf. Lemma 6.4).
• The map ι defines Φι uniquely, while Φι determines ι up to Frobenius twist. This
follows from the fact that φ̂ : L̂ → K̂ is the `-adic completion of ι, and from
Lemma 6.5.

With this idea in mind, we start proving the converse by deducing the following from
our previous results:

6.9. Proposition. [3, Proposition 39] Let Φ : GDtot
K
→HDtot

L
be an isomorphism of total

decomposition graphs.
(1) For each geometric decomposition graph GDK for K/k, there exists a geometric

decomposition graph GDL for L/l such that Φ : GDK → GDL is an isomorphism.
(2) The graph GDK is regular-like if and only if GDL is regular-like. If this is the case,

then Φ is divisorial.

Sketch of proof. By Proposition 6.3, the (complete regular-like) decomposition graphs
GDK and HDL can be group theoretically recovered from GDtot

K
and HDtot

L
respectively, in

such a way that Φ restricted to GDK is an isomorphism. By Lemma 6.4, the graphs GDK

and HDL are divisorial as abstract decomposition graphs. Using Lemma 4.6, one shows
that Φ is divisorial. �
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6.10. Remark. Proposition 6.9 in particular implies that to recover (an isomorphism
between) function fields from (an isomorphism between) total decomposition graphs, it
suffices to start with (a divisorial isomorphism between) complete regular-like geometric
decomposition graphs. Viewing these (complete regular-like) geometric decomposition
graphs as (divisorial) abstract decomposition graphs, Proposition 5.7(4) implies that such
an isomorphism is always compatible with some Bertini type sets of rational quotients.

6.11. Theorem (Main theorem of global theory).
Let K/k and L/l be function fields of transcendence degrees > 1, with complete regular-like
geometric decomposition graphs GDK and HDL (viewed as geometric-like abstract decompo-
sition graphs) endowed with Bertini-type sets U and B of rational quotients, respectively.
Let Φ : GDK → HDL be a proper morphism compatible with B and U, induced from an
open group homomorphism Φ : Πa

K → Πa
L.

Then there exists an `-adic unit ε, and an embedding ι : L/l ↪→ K/k of function fields
which induces a morphism Φι : GDK →HDL as in Idea 6.8, such that Φ = ε · Φι.
If ι(l) = k then ι is unique up to Frobenius twists.

Outline of proof. Let jK : K× → K̂ resp. jL : L× → L̂ denote the `-adic completion
functors, and define K×(`) := jK(K×) ⊗ Z(`) and L×(`) := jL(L×) ⊗ Z(`). Without loss of
generality, we may assume that the Kummer morphism φ̂ : Λ̂HDL

= L̂ → Λ̂GDK
= K̂

maps L×(`) isomorphically to K×(`).
For ΦKx ∈ U corresponding to ΦKy ∈ B, let Kx,(`) ⊂ K̂x and Ky,(`) ⊂ K̂y be the unique
respective divisorial lattices such that φ̂Kx(Kx,(`)) ⊂ K×(`) and φ̂Ky(Ky,(`)) ⊂ L×(`). Then it
follows (from Proposition 5.7, among other things) that φ̂(Ky,(`)) = Kx,(`). Without loss
of generality, we may assume that φ̂ ◦ jL(y) = jK(x), in which case φ̂ induces a bijection
jL(K×y )→ jL(K×x ).
Let MK := φ̂(jL(L×)) ∩ jK(K×) and ML := φ̂−1(MK) ⊆ jL(L×). Then φ̂ : ML → MK is
an isomorphism mapping jL(K×y ) isomorphically to jK(K×x ).
Now let K0 = j−1

K (MK) ∪ {0} ⊆ K and L0 = j−1
L (ML) ∪ {0}. Then these are function

subfields. (One needs to check they are closed under addition, cf. [3, Lemmas 49 and
50].)
The connection to projective geometry follows from the fact that MK = jK(K×0 ) =
K×0 /k

× = P(K0) and ML = P(L0). These projective spaces are mapped bijectively to
each other under φ := φ̂|P(L0).
A line in P(K0) is lt0,t1 = (kt0 +kt1)×/k× = t0 · ((k(t1/t0) + k)×/k×) = t0 · jK(kt+k)× for
some t0 and t1 linearly independent and t = t1/t0; thus, the line only depends on jK(t0)
and jK(t1). Similarly one considers lines in P(L0).
The map φ maps lines in P(L0) bijectively to lines in P(K0), cf. [3, Lemma 51].
Now the statement follows from applying Artin’s fundamental theorem of projective ge-
ometries, after applying a suitable scaling. The existence of ε follows from Lemma 6.5.
Uniqueness up to Frobenius twist follows from the fact that L/L0 is purely inseparable,
cf. [3, Lemma 52]; to prove this, one uses the observation that ML⊗Z(`) = L×(`) ⊂ L̂. �
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7. Local theory

7.1. Theorem. [2, Theorem 4.4]
Let pr : Πc

K → Πa
K be the projection map and for any subgroup G ⊆ Πa

K, let G := pr−1(G).
(1) The transcendence degree td(K/k) can be recovered from Πa

K as the maximal in-
teger d for which there exists a closed subgroup ∆ ⊆ Πa

K such that ∆ ' Zd` and ∆
is commuting-liftable.

(2) Choose an integer r < d := td(K/k) and T ⊆ Z closed subgroups of Πa
K. Then

T ⊆ Z is an r-divisorial subgroup of Πa
K if and only if Z is maximal among the

closed subgroups of Πa
K such that:

(a) the group Z contains a closed subgroup ∆ ' Zd` such that ∆ is commuting-
liftable;

(b) the group T ' Zr` and T ′ = Z(Z ′).

Sketch of proof.
(1) If ∆ is a commuting-liftable non-pro-cyclic subgroup of Πa

K , then by Corollary
3.6(1), there exists a valuation v such that ∆ ⊆ Zv and ∆/(∆ ∩ Tv) is pro-cyclic.
Now the proof follows from Notation 2.3 and Abhyankar’s inequality rank(vK) +
td(Kv) ≤ td(K/k).

(2) One direction follows from Remark 3.2(3) and Lemma 3.3. We prove the converse.
Again by Corollary 3.6(1), there exists a valuation v0 such that Z ⊆ Zv0 and

T = Z ∩ Tv0 . Take Λ = (K ′)T and let v be the abelian pro-` Λ-core of v0.
Let ∆ be a maximal commuting-liftable subgroup of Z such that ∆ ' Zd` . (Note

that necessarily T ⊆ ∆, by maximality of ∆.) Applying Corollary 3.6(1) to ∆
yields a valuation v∆ such that ∆ ⊆ Zv∆

; let w be its abelian pro-` Λ-core.
By comparing (the maximal pro-` extensions of) their residue fields, it follows

that v = w. By construction, T ⊆ Tv and Z ⊆ Zv, so by maximality of T and Z,
these groups are equal, as required.

�

7.2. Corollary.
(1) The r-divisorial subgroups can be group theoretically recovered from Πa

K (hence
from Πc

K). In fact, an isomorphism Πa
K → Πa

L induced from an isomorphism
Πc
K → Πc

L bijectively maps (flags of) r-divisorial subgroups to (flags of) r-divisorial
subgroups.

(2) A sequence Z1 ≥ . . . ≥ Zr of closed subgroups of Πa
K with a corresponding sequence

Tv1 ≤ . . . ≤ Tvr of closed subgroups Ti ⊆ Zi is a flag of r-divisorial subgroups if
and only if the groups are maximal such that the following hold:
(a) each Zi contains ∆ ' Zd` such that ∆′ is abelian;
(b) each Ti satisfies Ti ⊂ In(K) and Ti ' Zi` and T ′i = Z(Z ′i).

(3) For any r-divisor v of K/k, the r-divisorial subgroups of Πa
Kv are exactly the

images under Zv → Πa
Kv (cf. (1)) of the r-divisorial subgroups Z ⊆ Zv endowed

with T ⊇ Tv.
(4) Hence, the total decomposition graph GDtot

K
can be group theoretically recovered

from Πc
K.

7.3. Proposition. [1, Proposition 5.3(2)] Any isomorphism of total decomposition
graphs Φ : GDtot

K
→ HDtot

L
is compatible with (geometric) rational quotients. That is,

for each geometric rational quotient ΦLy : HDtot
L
→ GDLy

, the morphism Φα := ΦLy ◦ Φ

determines a(n abstract, hence by Proposition 5.6 a) geometric rational quotient of GDtot
K
.
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Sketch of proof. It follows from Proposition 6.9(1) and Idea 6.1 that for every v ∈ DK

which is mapped to w ∈ DL, the residual morphism Φv : GDKv →HDLw is an isomorphism.
By Lemma 4.6, each Φv is divisorial. So after dualising, each φ̂v : L̂w× → K̂v× is an
isomorphism, and there is a commutative diagram

(8)
ÛGDLw

ÛGDKv

L̂w× K̂v×

φ̂

φ̂v

.

If v and w are 1-vertices, then we also obtain a commutative diagram

(9)
L̂× Z`

K̂× Z`

φ̂ avw

for some avw ∈ Z(`). Using these diagrams, one checks that Φα := ΦLy ◦ Φ is surjective,
divisorial, and determines a rational quotient, cf. Definition 5.1. �

7.4. Remark.
(1) Since we are assuming that k is the algebraic closure of a finite field, it only carries

the trivial valuation. In particular, the quasi prime r-divisors of [1] are just prime
r-divisors as in Definition 2.2.

(2) It is possible to determine from Πa
K whether k is the algebraic closure of a finite

field, since this is equivalent to the fact that there are generators τw for all r-
divisorial inertia groups Tw such that

∏
w τw = 1 is the only pro-relation on the

system (τw)w, cf. [1, Lemma 4.2].
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